

제약/바이오 산업군을 위한 자문 및 컨설팅 제안서

We help people with data

CONTENTS | 제약/바이오 산업군을 위한 자문 및 컨설팅 제안서

1. 회사 소개	03
2. 자문 및 컨설팅 서비스	04
3 연락처	05

CONTENTS | 제약/바이오 산업군을 위한 자문 및 컨설팅 제안서

1. 회사 소개	03
2. 자문 및 컨설팅 서비스	
3 연락처	

About suran

Eretec DataLabs

회사명 | 주식회사 이레테크

설립일 | 1999년 4월

대표자 지만영

본사

경기도 안양시 시민대로401 (관양동, 대륭테크노타운 15차) 9층 901호, 902호

공장/부설연구소

경기도 군포시 군포첨단산업2로 77(부곡동)

부산남부센터

경남 김해시 율하3로 69 세정빌딩 201호

EMC 챔버 솔루션

- EMC Anechoic 챔버
- Antenna 챔버

EMC 측정 솔루션

- EMI/EMS 측정시스템
- Burst/Surge Test

R&D

- EMC, Antenna 측정
- RFID, EME, EMP
- EMC/RF 시스템 개발

소프트웨어 판매

- Minitab Solutions Analytics™
- DecisionTools
- CrystalBall
- Image-Pro

교육 및 도서 출판

- 통계적 품질관리(SQC)
- 몬테카를로 시뮬레이션

컨설팅 및 용역

- SPC·STAT, ETA 시스템
- 고급통계 자문

R&D

- 데이터마이닝
- 통계 분석 엔진 고도화

1.2 제약/바이오 산업군을 위한 Minitab 기능

Minitab Statistics Software는 식약처 등과 같은 허가 기관에서 요구하는 높은 수준의 통계분석 기법을 수행하기 위해 필요한 시각화, 통계 분석, 예측 및 개선 분석을 제공합니다.

데이터 핸들링

데이터 탐색

데이터 분석

쉬운 보고서 작성

- 최신 고급 분석도구 제공
- 머신러닝 기법으로 비즈니스 예측

데이터 분석

- Python, R과 같은 오픈 소스 통합 기능 제공
- 간편한 그래프와 분석결과 전달
- 수정, 공유 및 협업

사용편의성

- 클라우드 버전 제공
- 원클릭 분석
- 직관적 메뉴

• 그래프 자동 업데이트

시각화

• 대화형 갤러리 제공

신뢰성/생존분석 예측분석 시각화

기초통계

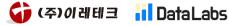
- 기술통계량
- 가설검정
- 신뢰구간
- 정규성 검정
- 회귀분석
- 분산분석

FDA

- 측정시스템 분석
- Gage R&R
- 샘플링 검사
- 관리도
- 공정능력분석

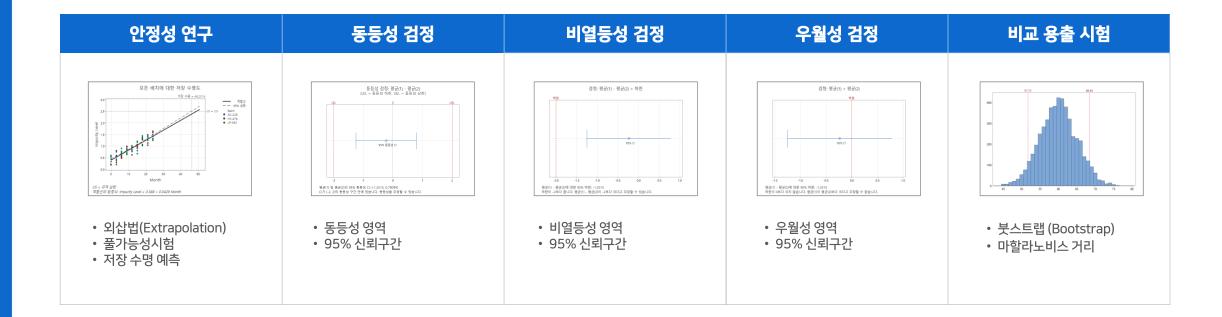
실험계획법

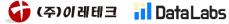
- 요인설계
- 반응 표면 설계
- 혼합물 설계
- 다구찌 설계


- 분포 분석
- 가속 수명 검사
- 수명데이터 회귀분석
- 프로빗 분석

- 로지스틱 회귀분석
- CART® 분류
- CART® 회귀

- 산점도
- 상자그림
- 히트맵
- 히스토그램
- 그래프 빌더 (Graph Builder)





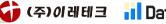
1.2 제약/바이오 산업군을 위한 Minitab 기능

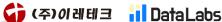
특히, 제약/바이오 산업군에서는 안정성 연구, 동등성 검정 등과 같은 분석 기법들이 현업 실무 관점에서 유용하게 사용되고 있습니다.

문제해결에 꼭 필요한 통계분석 기법 외에도 제약/바이오 산업군에서 필요한 내부 품질 향상 또는 연구 개발을 위한 분석 기법을 Minitab으로 수행할 수 있습니다.

CONTENTS | 제약/바이오 산업군을 위한 자문 및 컨설팅 제안서

1. 회사 소개	
2. 자문 및 컨설팅 서비스	04
3 여란처	


2.1 자문 및 컨설팅 서비스 개요


☞ 자문 서비스의 목적

- 제약/바이오 산업군은 규제환경이 매우 복잡하며 이에 따라 제품 개발, 생산, 판매 등 모든 단계에서 규제 준수가 필요합니다.
- 이를 위해서는 전문 지식과 경험이 필요하며 이레테크는 통계, 품질, 예측 등의 문제를 당사의 통계 전문가의 도움으로 시간과 비용을 대폭 절약하고 통계적 문제를 해결 및 개선할 수 있습니다.
- 최근 식약처 등의 허가기관에서 요구하는 통계 분석의 수준이 높아지면서 문제 해결 또는 승인을 받기 위해 올바른 분석 방법을 적용하고 결과의 유의성 검증 및 정확한 결과 해석의 중요성이 더욱 높아지고 있습니다.

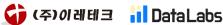
☞ 자문 서비스의 필요성

- 전문적인 분석 기법, 낯선 용어, 통계적 분석 역량의 내재화를 위한 시간과 노력 등이 많이 필요한 통계 분석은 최소의 시간 투자를 통해 고객이 꼭 필요한 서비스를 제공 받고 효율성 높은 결과를 도출할 필요가 있습니다.
- 이레테크는 고객과 상호 간의 노력을 통해 불필요한 시간과 비용을 줄여 최소의 시간과 최대의 효율을 제공합니다.
- 이를 위해 고객의 목적에 따라 시간과 비용을 절약할 수 있고 빠른 피드백을 받아볼 수 있는 자문, 전문가로부터 문제 해결을 위한 A ~ Z까지 분석을 의뢰할 수 있는 컨설팅 서비스를 갖추고 있습니다.

제약/바이오 산업군에서 널리 사용되며 꼭 필요한 통계분석 기법에 대한 소개입니다.

안정성 연구	비교 용출 시험	동등성 검정	비열등성 검정	우월성 검정
 제약 의약품의 성능이 유통기간 내로 얼마나 유지되는지 예측하기 위해 사용되는 통계적분석 기법 Minitab 17부터 제공됨 ICH Q1A(R2)의 지침에부합하는 결과를 제공함 	 두 의약품의 생물학적 동등성 입증을 위한 시험 의약품 동등성 시험 기준 개정으로 인한 유사성 인자(f₂)의 단일 추정값으로 비교 용출 시험의 판정 결과 제시가 불가함 (규정개정에따른 의약품동등성 시험시유의사항, 식품의약품안전평가원, 2022) 유사성 인자(f₂)에 대한 붓스트랩 신뢰구간 또는 마할라노비스 거리 등의 통계적 방법을 이용한 타당성 입증이 필요함 	 두 집단의 평균이 동일한지 여부를 확인하기 위한 검정으로, 두 약의 효과가 임상적으로 동등함을 입증하는 것이 목적 두 평균 차이가 과학적 동등성 영역에 존재함을 제시해야 함 	 시험약의 효과가 활성 대조약보다 열등하지 않음을 입증하기 위한 방법 복제품의 승인 또는 신약 개발의 효과 입증을 위해 사용됨 두 평균 차이가 과학적 비열등성 영역에 존재함을 제시해야 함 	 시험약의 효과가 활성 대조약보다 우월함을 입증하기 위한 방법 두 평균 차이가 과학적 우월성 영역에 존재함을 제시해야 함

제약/바이오 산업군에서 널리 사용되며 꼭 필요한 통계분석 기법에 대한 소개입니다.



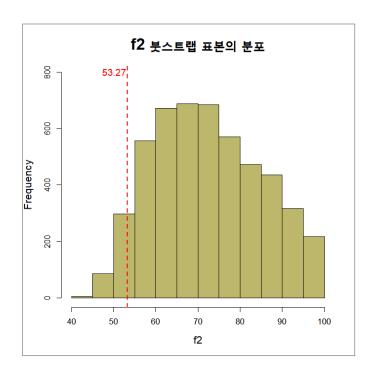
안정성 시험이란 의약품 등의 저장 방법 및 사용 기간 등을 설정하기 위하여, 경시적 변화에 따른 품질의 안정성을 평가하는 시험을 말합니다.

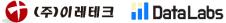
• ICH Q1A(R2)에 의거, 외삽(Extrapolation) 및 풀가능성시험(Poolability Test)을 이용한 저장 수명 제시

α = 0.25인 상태에서 모형 선택 모든 배치에 대한 저장 수명도 출처 DF Seq SS Seq MS F-값 P-값 저장 수명 = 46.2314 Month 8.9449 8.94491 366.51 0.000 --- 95% 상한 Batch 0.0063 0.13 0.879 0.00315 2.5 US = 2.5 AC-228 Month*Batch 0.0238 0.01192 0.49 0.616 HX-476 오차 LP-392 1.8304 0.02441 총계 80 10.8054 출처 DF Seq SS Seq MS F-값 P-값 Month 8.9449 8.94491 371.45 0.000 Batch 0.0063 0.00315 0.13 0.878 오차 1.8542 0.02408 총계 10.8054 80 출처 DF Seq SS Seq MS F-값 P-값 20 Month Month 8.945 8.94491 379.81 0.000 US = 규격 상한 오차 1.861 0.02355 적합선의 방정식: Impurity Level = 0.388 + 0.0429 Month 총계 10.805 선택된 모형 안의 항: Month

<식품의약품안전처고시 제 2019-132호 (2019.12.17, 개정)>

제약/바이오 산업군에서 널리 사용되며 꼭 필요한 통계분석 기법에 대한 소개입니다.

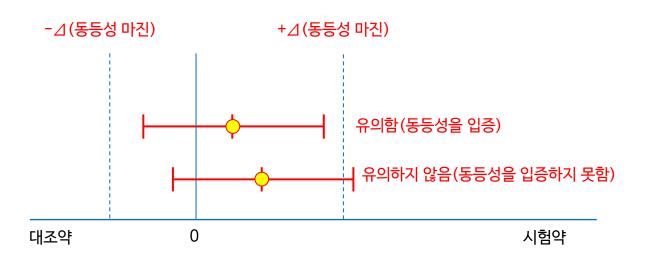

의 비교 용출 시험 (Dissolution Profiles)

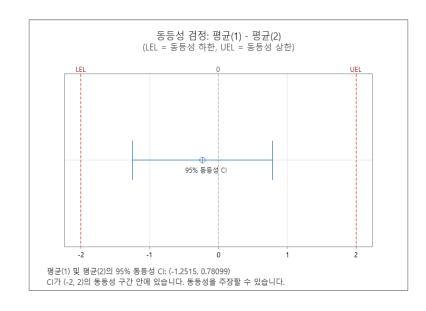

두 치료제가 생물학적으로 동등함을 입증하기 위해 진행하는 시험

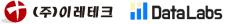
- 식품의약품안전평가원의 생물학적 동등성 판정 기준 변경: 변이계수의 기준치 초과로 유사성 인자(f₂) 적용이 어려운 경우, <u>통계적 기법에 근거한 결과 제출이 요구됨</u>
- R을 활용한 유사성 인자(f₂)에 대한 90% 붓스트랩 신뢰하한 제시

90% 신뢰구간 하한 (5 th percentile)	유사성 판정 결과
53.73	합격

90% 신뢰구간 하한 (5 th percentile)	유사성 판정 결과
46.25	불합격

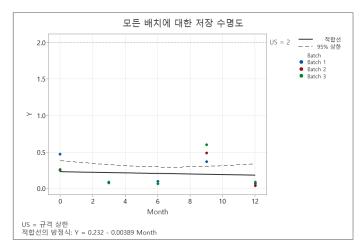



제약/바이오 산업군에서 널리 사용되며 꼭 필요한 통계분석 기법에 대한 소개입니다.

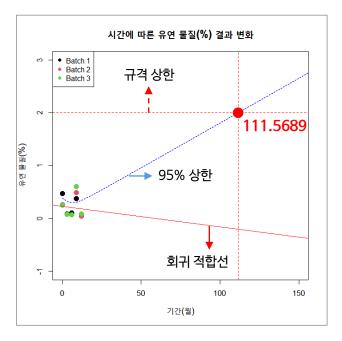

동등성 검정 (Equivalence Test)

한 집단의 평균이 목표값 또는 다른 집단의 평균과 같은지 여부를 평가하기 위한 검정으로, 두 치료제 사이에 임상적으로 의미 있는 차이가 없음을 보이기 위해 사용합니다.

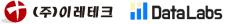
- 표준 2 표본 t 검정의 목적: 두 모집단의 평균이 다름을 입증
- 2 표본 동등성 검정의 목적: 두 모집단의 평균이 동등함을 입증



2.3 자문 수행 사례

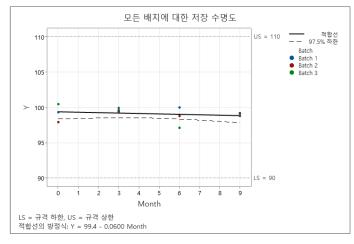

이레테크는 식약처 등과 같은 허가기관에서 요구하는 한층 강화된 통계분석 수준을 만족하기 위해 다양한 제약/바이오 고객사의 요청에 따라 자문 및 컨설팅 서비스를 수행하고 있습니다.

Case 1) D사 안정성 연구


- 프로젝트명: 제품 유연 물질의 저장수명 산출
- 기간: 2022.06
- 목적: 허가 기관 승인
- 문제: Minitab에서 안정성 연구 분석을 진행했으나, 저장 수명이 산출되지 않아 결과 제시가 불가함
- 해결 방안: Minitab의 저장 수명 산출 공식을 이용하여 저장 수명을 직접 계산함
- 기대 효과: 통계적 방법에 근거한 저장 수명 산출로 제품 승인 여부를 객관적으로 판정이 가능함

▶ Minitab에서 저장 수명이 계산되지 않아 결과 제시가 불가함

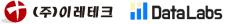
▶ 유연물질의 저장 수명을 직접 계산한 결과, 저장 수명(유연 물질의 50% 이상이 규격 상한 아래에 있다고 95% 신뢰할 수 있는 기간)은 111.5689개월로 추정되었음



2.3 자문 수행 사례

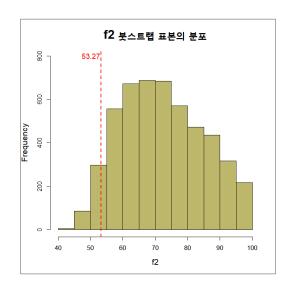

이레테크는 식약처 등과 같은 허가기관에서 요구하는 한층 강화된 통계분석 수준을 만족하기 위해 다양한 제약/바이오 고객사의 요청에 따라 자문 및 컨설팅 서비스를 수행하고 있습니다.

Case 2) N사 안정성 연구


- 프로젝트명: 제품 함량의 저장수명 산출
- 기간: 2022.08
- 목적: 허가 기관 승인
- 문제: Minitab에서 안정성 연구 분석을 진행했으나, 저장 수명이 산출되지 않아 결과 제시가 불가함
- 해결 방안: Minitab의 저장 수명 산출 공식을 이용하여 저장 수명을 직접 계산함
- 기대 효과: 통계적 방법에 근거한 저장 수명 산출로 제품 승인 여부를 객관적으로 판정이 가능함

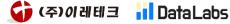
▶ Minitab에서 저장 수명이 계산되지 않아 결과 제시가 불가함

▶ 함량의 저장 수명을 직접 계산한 결과, 저장 수명(함량의 50% 이상이 규격 상한 아래에 있다고 95% 신뢰할 수 있는 기간)은 42.1177개월로 추정되었음



2.3 자문 수행 사례

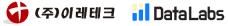
이레테크는 식약처 등과 같은 허가기관에서 요구하는 한층 강화된 통계분석 수준을 만족하기 위해 다양한 제약/바이오 고객사의 요청에 따라 자문 및 컨설팅 서비스를 수행하고 있습니다.


Case 3) D사 비교 용출 시험

- 프로젝트명: 비교 용출 시험을 통한 활성대조약과 시험약의 생물학적 동등성 입증
- 기간: 2023.04
- 목적: 허가 기관 승인
- 문제: 허가 기관의 생물학적 동등성 판정 기준 변경으로 단일 유사성 인자(f₂) 값 제시 불가
- 해결 방안: f₂에 대한 붓스트랩(Bootstrap) 신뢰구간 또는 마할라노비스 거리 등 통계적 기법을 사용한 동등성 여부 제시
- 기대 효과: f₂의 단일 추정값 대신 다양한 경우의 수를 고려하는 통계적 방법을 적용한 결과 제시로 인해, 보다 정확한 동등성 판정이 가능함

90% 신뢰구간 하한	유사성 판정 결과
53.27	합격

▶ 붓스트랩 신뢰구간의 90% 하한이 50보다 크기 때문에 두 약의 성능은 유사하다고 결론지을 수 있음



2.4 교육 과정 소개

이레테크 데이터랩스는 <u>제약/바이오 산업군에서 반드시 필요한 통계 분석 기법을 이해</u>하기 위해 다양한 교육 과정을 제공하고 있습니다. 통계분석을 이해하기 위해 가장 기본이 되는 기초통계부터 실험계획법, 안정성 연구, FDA Process Validation 등이 대표적인 교육 과정이며 고객의 요구에 따라 집체교육 및 출장교육이 모두 가능합니다.

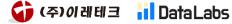
#	교육명	주요 분석 기법	선수 과목
1	Minitab 기초통계	기술통계량, 그래프, 정규분포, 가설검정, 일원 분산분석, 단순 회귀분석	필수 과정
2	FDA Process Validation	측정 시스템 분석(MSA), 관리도, 공정능력분석	기초통계
3	QbD 실험계획법	완전 요인 설계, 부분 요인 설계, 반응 표면 설계, Design Space	기초통계
4	Minitab 신뢰성 분석	우측 관측 중단, 임의 관측 중단, 보증 분석, 가속 수명 검사, Kaplan-Meier, Cox 회귀분석	기초통계
5	Minitab 다구찌 강건설계	손실함수, S/N비, 직교배열표, 동특성	기초통계
6	공정 레시피 최적화 및 예측을 위한 통계적 모델링	다중회귀분석, 일반선형모형(GLM), 공분산분석(ANCOVA), 다변량 분산분석(MANOVA)	기초통계
7	혼합물 실험계획법	심플렉스 중심 설계, 심플렉스 격자 설계, 꼭지점 설계	기초통계
8	Minitab 안정성 연구	공분산분석(ANCOVA), 외삽, 풀가능성시험	기초통계

→ 기초통계 커리큘럼(14시간, 2일)

기초통계 과정에서는 Minitab 사용을 위한 기초 사용법 및 데이터 핸들링 방법의 기초를 익히며 그래프 활용능력을 습득 합니다. 통계분석 과정에서 일반적으로 널리 사용되는 정규분포의 이해, 평균의 차이에 대한 검정, 분산분석(ANOVA) 등을 다룹니다.

구분	교육명	세부내용	시간
	Minitab 소개	Minitab 화면 및 파일 구조 이해	50분
	데이터 핸들링	데이터 편집방법 l (데이터 추출 및 병합)	50분
		데이터 편집방법 ॥ (데이터 변환 및 생성)	50분
10l+L		점심식사	1시간
1일차	통계 개요	통계의 역할 및 데이터 유형	50분
	기초통계 및 그래프 분석	기술통계량을 통한 연속형 데이터 요약	50분
		그래프 분석 l (히스토그램, 상자그림)	50분
		그래프 분석 ॥ (상관분석과 산점도)	50분

구분	교육명	세부내용	시간
	확률분포	확률분포의 이해(정규분포)	50분
	통계적 추론	가설 검정의 이해	50분
		평균에 대한 검정 l (One-sample Z, One-sample t)	50분
2일차		1시간	
스크 <u>이</u>	통계적 추론	평균에 대한 검정 II (Two-sample t, Paired t)	50분
	분산분석	분산분석의 이해	50분
		일원 분산분석의 이해 및 실습	50분
	상관/회귀분석	상관, 회귀분석의 이해 및 실습	50분

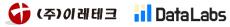


FDA Process Validation(14시간, 2일)

FDA Process Validation에서는 관리도를 비롯한 측정시스템 분석(MSA), 공정능력분석 등 공정관리에 꼭 필요한 도구들을 학습하는 과정입니다. 각 도구들의 연관성과 유기적인 연계 활용 방안을 배움으로써 효율적인 공정관리를 할 수 있는 전문지식을 습득합니다.

구분	교육명	세부내용	시간
	품질관리를 위한 기초통계	DMAIC 방법론과 Six Sigma	50분
		품질관리 관점의 중심위치와 산포, 정규분포 이해	50분
	QC7	품질관리(QC) 7 도구의 활용, 그래프 분석	50분
10l+L	점심식사		1시간
1일차	측정시스템분석	측정시스템분석의 개념	50분
		측정시스템 정밀도 검정, Gage R&R	50분
		측정시스템 정확도 검정, 선형성 및 치우침 연구	50분
		계수형 합치도 분석	50분

구분	교육명	세부내용	시간
	관리도	관리도의 개념 및 종류	50분
		관리상태와 관리이탈 유형	50분
		계량형 관리도 학습 및 실습	50분
2일차	점심식사		1시간
^고 교시	일사 관리도	계수형 관리도 학습 및 실습	50분
	공정능력분석	공정능력지수의 개념 및 종류	50분
		공정능력지수의 산출 이해(Cp, Pp, 시그마수준)	50분
		공정능력분석 실습(정규 및 비정규)	50분



● QbD 실험계획법 커리큘럼(14시간, 2일)

QbD(Quality by Design)에 근거한 실험 설계의 절차에 대해 학습합니다. 선별 설계, 특성화 설계, 최적화 설계를 통해 반응변수와 인자 간의 관계를 파악하고 최적의 설계공간(Design Space)을 학습합니다.

구분	교육명	세부내용	시간
	실험계획의 개요	실험계획법의 개요, QbD의 개념 소개	50분
		QbD 실험 설계 절차(선별, 특성화, 최적화) 소개	50분
	수학적 모형 수학적 모형의 수립 및 해석		50분
10l+L		점심식사	1시간
1일차	일원 배치법	CQA를 사용한 일원 배치법 기본원리 및 실습	50분
		효과(Effect)의 이해(주효과, 교호효과)	50분
	이원 배치법	이원 배치법의 기본원리 및 실습	50분
	요인 설계	QbD 요인 설계의 개념 및 OFAT 실험과의 비교	50분

구분	교육명	세부내용	시간
	완전 요인 설계	완전 요인 설계(Full Factorial Design) 종류 이해	50분
		반응 최적화(Response Optimization) 이해 Design Space와 Normal Operating Range 이해	50분
	부분 요인 설계 부분 요인 설계(Fractional Factorial Design)의 원리		50분
2011	점심식사		1시간
2일차	부분 요인 설계	비반복 설계 분석 방법 및 교락(confounding)의 이해	50분
	다중 반응 최적화	다중 Y의 최적설정 도출 중첩등고선도를 통한 설계영역 확인	50분
	반응 표면 설계 (RSM)	축점 이해, 중심합성계획법(CCD) 설계 및 실습	50분
	기타 실험 디자인	Plackett-Burman 설계, Box-Behnken 설계 이해	50분

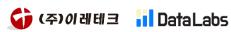
안정성 연구의 목적과 안정성 연구를 위한 기초통계를 이해하고 안정성 연구 분석 기법을 학습합니다. 제약/바이오 산업군에서의 안정성 사례 연구를 학습하고 외삽, 풀가능성시험 등의 용어에 대해 이해하는 과정입니다.

구분	교육명	세부내용	시간
	안정성 연구 개요 안정성 연구 목적 및 가이드라인의 이해		50분
	기초통계	가설검정, T/F 검정통계량, 유의확률의 이해	50분
	안정성 연구 분석 기법의 이해 ANOVA의 원리, 일원배치 분산분석 실습		50분
10l+L		점심식사	1시간
1일차	안정성 연구 분석 기법의 이해	회귀분석의 개념 이해, 단순/다중 회귀분석 학습 및 실습	50분
		ANCOVA의 개념 이해 및 실습	50분
	안정성 연구 실습	안정성 연구 설계, 풀가능성 시험, 외삽법	50분
		회귀 모형의 해석, 사용기간 예측, 기타 주의사항 학습	50분

2.6 교육 추천

이레테크에서는 모든 통계 교육과정을 이해하기 위한 선수과정인 기초통계(7h)를 기본으로 하여 고객의 니즈에 맞게 교육 과정을 선택하여 커스터 마이징 할 수 있습니다.

또한, 고객의 요청에 따라 <u>고객 데이터를 이용한 실습 예제 및 교안을 작성하고 통계분석을 실습 및 결과를 해석하는 교육도 가능합니다.</u>

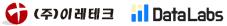

기본교육 추천(7h)

교육명	세부내용	시간
통계 개요	통계의 역할 및 데이터 유형, 중심위치와 산포	50분
데이터 시각화	그래프 분석(히스토그램, 상자그림, 산점도)	50분
확률분포	정규분포의 이해, 정규성 검정 실습	50분
	1시간	
통계적 추론	추정과 가설검정의 이해	50분
	평균에 대한 검정(One-sample t, Two-sample t, Paired t)	50분
분산분석	난분석 분산분석의 이해, 일원분산분석의 실습	
상관/회귀분석	상관, 회귀분석의 이해 및 실습	50분

교육 커스터마이징(택 1 or 중복선택 가능)

분석기법	세부내용	시간
안정성 연구	풀가능성 시험, 외삽법, 저장수명 예측	7h
동등성 검정	동등성 검정, 비열등성 검정, 표본 크기 산출	3h
통계적 모델링	분산분석 및 회귀분석, 로지스틱 회귀분석 심화과정	7h
FDA Process Validation	미국 FDA의 공정 validation 가이드라인 이해	7h
실험계획법	완전요인설계, 부분요인설계, 반응표면설계	7h
혼합물 실험계획법	꼭지점 설계, 혼합물 실험(공정변수, 양) 실습	7h
카이-제곱 / 비율 검정	연관성 검정, McNemar's 검정, 두 표본 모비율 검정	2h
비모수 검정	Wilcoxon signed test, Mann-Whitney test, Kruskal- Wallis test	2h

* 위의 교육시간은 협의에 따라 조정될 수 있습니다.



2.7 제약/바이오 산업군 교육 수행 이력

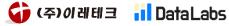
이레테크는 다양한 제약/바이오 산업군 고객사에 전문 지식을 갖춘 통계 전문가를 통해 안정감있고 신뢰도 높은 양질의 교육을 제공하고 있습니다.

순번	기간	업체명	교육 과정
1	2023.04	CJ제일제당	• Minitab 실험계획법
2	2023.03	삼양바이오팜	• Minitab 기초통계 / SQC / DOE
3	2022.10	한독	• Minitab 실험계획법
4	2022.10	SK바이오사이언스	• Minitab 기초통계 / SQC
5	2022.10	식품의약품안전평가원	• R을 이용한 통계분석 심화
6	2022.09	의약품 품질재단	• QbD 실험계획법
7	2022.09	식품의약품안전평가원	• Excel을 이용한 기초통계
8	2022.08	한국바이오협회	• Minitab 기초통계
9	2022.07	동아제약	• QbD 실험계획법
10	2022.07	의약품 품질재단	• QbD 실험계획법
11	2022.05	유한양행	• Minitab 기초통계 / SQC / DOE
12	2022.02	한국제약바이오협회	• QbD 실험계획법
13	2019.07	한국애보트진단	• Minitab 기초통계 / SQC / DOE
14	2019.06	JW중외제약	Minitab SQC / DOE
15	2019.02	충북대학교 약학과	• Minitab 실험계획법
16	2018.03	씨젠	• Minitab 기초통계 / DOE

*그 외 다수

2.8 자문 진행 프로세스

자문 서비스는 문제 특성에 따라 제공 범위 및 비용이 상이합니다. 고객과 상호 간의 노력을 통해 불필요한 시간과 비용을 줄여 최소의 시간과 최대의 효율을 제공합니다.


고객이 요구하는 사항을 토대로 자문에 대한 협의 후 시간 단위의 계약을 체결합니다.

데이터 정제부터 설계, 분석까지 일련의 프로세스를 제시합니다.

데이터 정제부터 설계, 분석까지 일련의 프로세스에 대한 기법을 자문합니다.

수집된 데이터를 통해 결과에 대한 정확한 해석을 제시합니다.

분석의 오류 발생 시 적절한 방법을 제시하여 분석의 신뢰도를 향상시킵니다.

2.9 자문 가능 분야

이레테크 데이터랩스의 각 분야의 경험있는 통계 전문가들이 통계 전반에 대한 문제를 전문지식을 바탕으로 신뢰감 있는 결과를 제공합니다.

기초통계	품질관리	실험계획법	모델링	제약/바이오
1. 샘플사이즈 계산	1. Gage R&R 연구	1. 완전요인설계	1. 다중회귀분석	1. 안정성 연구
2. 검정력 평가	2. 관리도 작성	2. 부분요인설계	2. 로지스틱 회귀분석	2. 동등성 검정
3. 평균차이 검정	3. 공정능력지수 산출	3. 반응표면설계	3. PLS 회귀	3. 우월성 검정
4. 카이제곱 검정	4. 비정규공정능력분석	4. 반응최적화	4. 공분산 분석	4. 비열등성 검정
5. 비모수 검정	5. 데이터 변환	5. 중첩등고선도	5. 고정/랜덤/혼합 효과 모형	5. 비교 용출 시험

*그외다수자문가능

2.10 기대효과

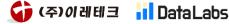
이레테크 데이터랩스의 자문 서비스는 타사 대비 저렴한 통계 자문 비용으로 고객분들께 자세한 분석 피드백을 제공함으로써. 기업 개선 효과를 높이는데에 도움을 드리고 있습니다.

승인을 위한 신뢰성 보장

- 이레테크 자문 서비스 및 Minitab 결과물은 ISO, AIAG, TS16949, Process Validation 및 QbD와 같은 각종 승인과 관련한 증빙 자료로서 인정 받을 수 있습니다.
- 저희 서비스는 국제적으로 인정받고 있는 Minitab 소프트웨어와 그에 제반한 지식을 기초하고 있기 때문에 국내 뿐만 아니라 해외에서도 신뢰성을 보장받고 있습니다.

업무 스트레스 경감

- 이레테크의 분석 전문가와 함께 일하는 순간부터 고객의 스트레스는 경감되기 시작할 것입니다.
- 통게 문제에 대한 조언자를 얻게 될 것이며, 회사 상급자 및 동료로부터 각종 질문에 대해 방어하실 수 있습니다.

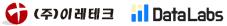

통계를 더욱 쉽게 이해

- 이레테크와 자문 서비스를 진행을 하는 동시에 고객의 통계에 대한 이해도를 높이기 위해 노력하고 있습니다.
- 자문 결과는 제공자의 일방적인 결과물이 아닌 고객과 함께 만드는 결과물입니다.

심플한 서비스

- 자문 서비스는 심플한 프로세스를 가잡니다. 식스시그마, DFSS 등과 같은 Big Y 과제 해결 프로젝트가 아닙니다.
- 따라서, 단위 문제에 대해 최대한 빠른 시간과 최소 비용을 들여 해결하는 것을 목적으로 합니다. 이것은 큰 문제 해결의 실마리가 될 것입니다.

- 간단한 통계 이론교육부터 실습까지 진행되는 교육으로 강사님께서 이해하기 쉽게 설명해 주시며 실무에 바로 적용가능한 예제를 활용해 실무에도 바로 적용가능 할 <mark>것으로 기대</mark>됩니다.
- 강사님의 맞춤형 교육이 많이 도움되었으며, 궁금하거나 필요한 부분은 자세히 설명해 주십니다.
- 사실 처음 배워보는 것 이어서 혹시나 어렵지 않을까 걱정 했었는데 강사님들이 찬찬히 하나 하나씩 친절하게 설명을 <u>잘 해주셔서 쉽게 이해를 할 수 있었습니다.</u> 혹시나 나중에 품질관리나 이런 부분에 취업을 했을 때 프로그램의 기본을 알고 사용할 수 있어 도움이 될 것 같습니다.
- 통계적으로 평균 유의 차를 검정할 수 있어 분석의 신뢰도를 <mark>향상</mark>시켰습니다.
- 실험계획법 자문 후, 평균적으로 70시간이 소요된 실험시간을 5시간으로 줄일 수 있었습니다.



2.11 자문 비용

자문 및 컨설팅 서비스는 난이도에 따라 공수 및 비용이 상이합니다. 이레테크의 자문 서비스는 개별 건 진행 또는 정기 구독권으로 이용하실 수 있으며, 자세한 내용은 고객과 협의를 통해 조정이 가능합니다.

	개별 건 진행	정기 구 <mark>독</mark> 권
개요	 개별 문의 건에 대해 비용 산정 추가 피드백 제공 또는 방문 상담 시 비용 발생 	 반기 또는 연간 일정 기간 동안 자문 서비스 이용 자문료 선 지급 후 자문 서비스 제공
분석 항목	 모델 개발 비용(기본): 200만원 항목 추가: 분석 대상(유연물질, 함량 등) 건 당 50만원 분석 대상 Y에 따라 가격 변동 있을 수 있음 Ex) 모델 4개 구축: 가견적(300만원) 	• 모델 개발 비용(기본) : 1,000만원
기본 제공사항	• 자문 보고서(결과표, 그래프, 결과해석 포함)	• 자문 보고서 (결과표, 그래프, 결과해석 포함)

CONTENTS | 제약/바이오 산업군을 위한 자문 및 컨설팅 제안서

3 연락처	05
2. 자문 및 컨설팅 서비스	
1. 회사 소개	

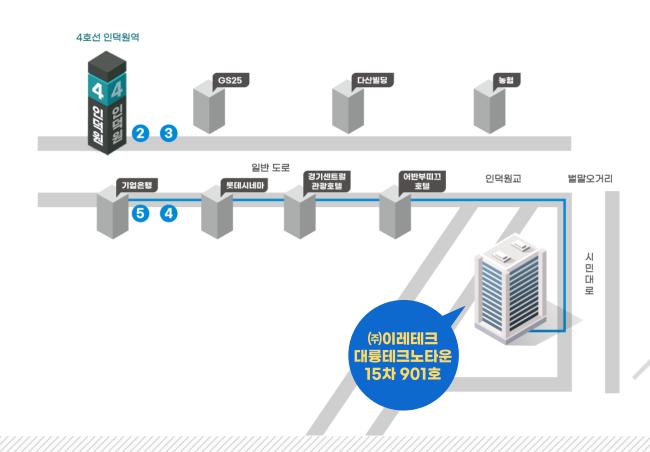
f 👓 💿 🖸

오시는길

Eretec DataLabs

㈜이레테크 사이트

전자파솔루션 | www.eretec.com 데이터랩스 | www.datalabs.co.kr 데이터랩스 캠퍼스 | www.datalabscampus.co.kr Minitab | www.minitab.co.kr


Contact US

Address

(14057) 경기도 안양시 동안구 시민대로401 (관양동, 대룡테크노타운 15차) 9층 901호, 902호

대중교통

4호선 인덕원역 4번출구 도보 10분 시내버스 대륭테크노타운, 한국교통안전공단 안양검사소, 평촌동주민센터, 인덕원대우아파트 정류장 하차

제약/바이오산업군을 위한 자문 및 컨설팅 제안서

THANK YOU

We help people with data